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Echo Tracking in SWIRLS Radar Nowcasting System

e Maximum Correlation (TREC) * Optical Flow
MOVA — Multi-scale Optical-flow by
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Variational method for Echoes of Radar

Seagt.hing radius

Given I(x,y,t) the image brightness at
point (x,y) at time t and the brightness

-------- T oixel matrix with T—6min is constant when pattern moves, the
maximum correlation R echo motion components u(x,y) and
where Z; and Z, are the reflectivity at T+0 and T+6min V(X'y) can be retrieved via minimization
respectively of the cost function:
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Predicting evolution of weather radar maps

* Input sequence: observed radar maps up to current time step

* Qutput sequence: predicted radar maps for future time steps

R

Xf__|_1,_ c ey Xt_|_j( — arginax p(XH-l: c ey Xt+}(’ ‘ Xt__]_|_1, Xt_j_}_g. . ?Xt)
Xf+1 ..... Xf+f{

Maximize posterior pdf of echo sequence across K time levels
based on previous J time levels of observations
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Sequence-to-sequence learning

output sequence

Yy W G

| 1]

—> —> > St41 >

L

input sequence




BSERVATORY

(. Lt
“I’ HonG KonG O

Encoding-forecasting model

Encoding module
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Forecasting module
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Spatiotemporal encoding-forecasting model
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ConvLSTM model

e Convolutional long short-term memory (ConvLSTM) model

X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, and W.C. Woo. Convolutional LSTM
network: A machine learning approach for precipitation nowcasting. NIPS 2015.

* Two key components:
— Convolutional layers

— Long short-term memory (LSTM) cells in recurrent neural network
(RNN) model
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Convolution

An operation on two functions

Produces a third function which gives the overlapped area of

the two functions as a function of the translation of one of the
two functions
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Convolution

e Continuous domains:

(f )t /f t—TdT_/ F(t— ) g(r)dr = (g% F)(t)

* Discrete domains:

O @)

(f*g)nl= Y flmlgln—m]= Y fln—m]glm] = (gx f)n]

m=—-aco m=—oco

e Discrete domains with finite support:

(f*g)[n Z fln—m
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2D convolution

e 2D convolution (a.k.a. spatial convolution) as linear spatial
filtering

Center element of the kernel is placed over the (0% 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

 Multiple feature maps, one for each convolution operator
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Convolutional and pooling layers

e Convolution: feature detector

* Max-pooling: local translation invariance

Convolution layer Max-pooling layer
determines the future

state of a certain cell in
the grid by the inputs
and past states of its
local neighbors

Features maps Input for

next layer

Size of state-to-state
convolutional kernel
for capturing of
spatiotemporal motion
patterns

Features maps

Input image
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Convolutional and pooling layers
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NN and Fully-connected Recurrent NN

Feed-forward NN

OR® ot

Figure 1.1: Left: Feed-forward neural network. Middle: Layered network with an input layer, a
fully recurrent hidden layer and an output layer. Right: Fully connected recurrent network.
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From RNN to LSTM

@ Output @

Hidden
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Figure 2.1: Left: RNN with one fully recurrent hidden layer. Right: LSTM network with
memory blocks in the hidden layer (only one is shown).
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Dependencies between events in RNNs

* Short-term dependencies:
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Ordinary hidden units in multilayered networks

* Nonlinear function (e.g., sigmoid or hyperbolic tangent) of
weighted sum

x0=+1 X; X,

* RNNs, like deep multilayered networks, suffer from the
vanishing gradient problem



LSTM units

* LSTM units, which are essentially subnets, can help to learn
long-term dependencies in RNNs

e 3 gatesinan LSTM unit: input gate, forget gate, output gate
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RNNs with ordinary unit

RNNs with LSTM units



Encoding-forecasting ConvLSTM network

e Last states and cell outputs of encoding network become initial
states and cell outputs of forecasting network

* Encoding network compresses the input sequence into a
hidden state tensor

* Forecasting network unfolds the hidden state tensor to make
prediction

Encoding Network / Prediction
== -

ConvLST M,

ConvLST M;




ConvLSTM governing equations
Inputs Memory
y cell

>
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input gate 1 = U(W ix Xy + Wi s Hy1 +We;0C1 + b.i_)
forgetgate  f, = (W % X+ Wiy s My + WepoCiy +by)
Celloutputs  Cy = froCi_1 + iy otanh(W,.x Xy + Whe x Hi 1 + b.)
outputgate g, — (W, % Xy + Wi+ Hy_y + Wep 0 Cy + by)

Hidden states H; = 04 © ta.nh(ct)
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Training and preprocessing of radar echo dataset

e 97 daysin 2011-2013 with high radar intensities

* Preprocessing of radar maps:
— Pixel values normalized
— 330 x 330 central region cropped
— Disk filter applied
— Resized to 100 x 100
— Noisy regions removed



A =5

“" HONG KONG OBSERVATORY

Data splitting

e 240 radar maps (a.k.a. frames) per day partitioned into six 40-
frame blocks

 Random data splitting:
— Training: 8148 sequences
— Validation: 2037 sequences
— Testing: 2037 sequences

 20-frame sequence :
— Input sequence: 5 frames
— Qutput sequence: 15 frames (i.e., 6-90 minutes)



Comparison of performance

e ConvLSTM network:
— 2 ConvLSTM layers, each with 64 units and 3 x 3 kernels

e Fully connected LSTM (FC-LSTM) network:
— 2 FC-LSTM layers, each with 2000 units

* ROVER:

— Optical flow estimation

— 3variants (ROVER1, ROVER2, ROVER3) based on different initialization
schemes



A =5

ﬁ" HONG KONG OBSERVATORY

Comparison of ConvLSTM and FC-LSTM
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Data Cases

the loss of entropy for
ConvLSTM decreases
faster than FC-LSTM across
all the data cases

=» a better matching with
training datasets



A =5

v" HONG KONG OBSERVATORY

Comparison based on 5 performance metrics

e Rainfall mean squared error (Rainfall-MSE)

e Critical success index (CSI)

* False alarm rate (FAR)

* Probability of detection (POD)

e (Correlation

Model Rainfall-MSE | CSI FAR | POD | Correlation
ConvLSTM(3x3)-3x3-64-3x3-64 1.420 0.577 | 0.195 | 0.660 0.908
Roverl 1.712 0.516 | 0.308 | 0.636 0.843
Rover2 1.684 0.522 | 0.301 | 0.642 0.850
Rover3 1.685 0.522 | 0.301 | 0.642 0.849
FC-LSTM-2000-2000 1.865 0.286 | 0.335 | 0.351 0.774

Threshold = 0.5 mm/h
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Prediction accuracy vs prediction horizon

—ConvLSTM -+ ROVER1-+-ROVER2--ROVER3 *« FC-LSTM
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Different
parameters
are used in
ROVER],2,3
optical flow
estimators
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Two squall line cases

e Radar location (HK) at center (~ 250 km in x- and y- directions)

* 5inputframes are used and a total of 15 frames (i.e. T+90 min)
in forecasts

30 min " 2EE d7 iGE 47 iGE 27 AGE A1 A 2
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30 min

Input frames
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30 min

Input frames

ConvLSTM

ROVER2




Ongoing Development

e Longer training dataset (™~ 10 years data)
* Adaptive learning to cater for multiple time scale processes

* Optimizing performance for higher rainfall intensity based on
different convolutional and pooling strategies

* Extend learning process to extract stochastic characteristics of
radar echo time sequence, features of convective
development from mesoscale/fine-scale NWP models



