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Echo Tracking in SWIRLS Radar Nowcasting System

• Maximum Correlation (TREC) • Optical Flow
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Searching radius

Pixel matrix TREC vector

T
pixel matrix with 
maximum correlation R

T – 6 min

Searching radius

0.5, 1, 1.5, 2, … 5 km 
CAPPI 64, 128, 256 km 
range 

where Z1 and Z2 are the reflectivity at T+0 and T+6min 
respectively

Given I(x,y,t) the image brightness at
point (x,y) at time t and the brightness
is constant when pattern moves, the
echo motion components u(x,y) and
v(x,y) can be retrieved via minimization
of the cost function:
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MOVA – Multi-scale Optical-flow by 
Variational Analysis

ROVER – Real-time Optical-flow by 
Variational method for Echoes of Radar



Predicting evolution of weather radar maps

• Input sequence: observed radar maps up to current time step

• Output sequence: predicted radar maps for future time steps

Maximize posterior pdf of echo sequence across K time levels 
based on previous J time levels of observations



Sequence-to-sequence learning
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Encoding-forecasting model

Encoding module

Forecasting module
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Spatiotemporal encoding-forecasting model



ConvLSTM model

• Convolutional long short-term memory (ConvLSTM) model

• Two key components:
– Convolutional layers

– Long short-term memory (LSTM) cells in recurrent neural network
(RNN) model

X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, and W.C. Woo.  Convolutional LSTM
network: A machine learning approach for precipitation nowcasting.  NIPS 2015.



Convolution

• An operation on two functions

• Produces a third function which gives the overlapped area of 
the two functions as a function of the translation of one of the 
two functions



Convolution

• Continuous domains:

• Discrete domains:

• Discrete domains with finite support:



2D convolution

• 2D convolution (a.k.a. spatial convolution) as linear spatial 
filtering

• Multiple feature maps, one for each convolution operator



Convolutional and pooling layers

• Convolution: feature detector

• Max-pooling: local translation invariance

Size of state-to-state 
convolutional kernel 
for capturing of 
spatiotemporal motion 
patterns

determines the future 
state of a certain cell in 
the grid by the inputs 
and past states of its 
local neighbors



Convolutional and pooling layers

input image

convolutional
layer

pooling
layer

weight
sharing

local receptive
fields

pooling



Feed-forward NN

NN and Fully-connected Recurrent NN



From RNN to LSTM



Dependencies between events in RNNs

• Short-term dependencies:

• Long-term dependencies:



Ordinary hidden units in multilayered networks

• Nonlinear function (e.g., sigmoid or hyperbolic tangent) of 
weighted sum

• RNNs, like deep multilayered networks, suffer from the 
vanishing gradient problem



LSTM units

• LSTM units, which are essentially subnets, can help to learn 
long-term dependencies in RNNs

• 3 gates in an LSTM unit: input gate, forget gate, output gate



RNNs with ordinary unit

RNNs with LSTM units



Encoding-forecasting ConvLSTM network

• Last states and cell outputs of encoding network become initial 
states and cell outputs of forecasting network

• Encoding network compresses the input sequence into a 
hidden state tensor

• Forecasting network unfolds the hidden state tensor to make 
prediction



ConvLSTM governing equations

Hidden states

Cell outputs

Inputs

forget gate

input gate

output gate

Memory
cell

Accumulator of 
state 

information



Training and preprocessing of radar echo dataset

• 97 days in 2011-2013 with high radar intensities

• Preprocessing of radar maps:
– Pixel values normalized

– 330 x 330 central region cropped

– Disk filter applied

– Resized to 100 x 100

– Noisy regions removed



Data splitting

• 240 radar maps (a.k.a. frames) per day partitioned into six 40-
frame blocks

• Random data splitting:
– Training: 8148 sequences

– Validation: 2037 sequences

– Testing: 2037 sequences

• 20-frame sequence :
– Input sequence: 5 frames

– Output sequence: 15 frames (i.e., 6-90 minutes)



Comparison of performance

• ConvLSTM network:
– 2 ConvLSTM layers, each with 64 units and 3 x 3 kernels

• Fully connected LSTM (FC-LSTM) network:
– 2 FC-LSTM layers, each with 2000 units

• ROVER:
– Optical flow estimation

– 3 variants (ROVER1, ROVER2, ROVER3) based on different initialization 
schemes



Comparison of ConvLSTM and FC-LSTM 

the loss of entropy for 
ConvLSTM decreases 
faster than FC-LSTM across 
all the data cases 

 a better matching with 
training datasets



Comparison based on 5 performance metrics

• Rainfall mean squared error (Rainfall-MSE)

• Critical success index (CSI)

• False alarm rate (FAR)

• Probability of detection (POD)

• Correlation

Threshold = 0.5 mm/h



Prediction accuracy vs prediction horizon

Different 
parameters 
are used in 
ROVER1,2,3
optical flow 
estimators



Two squall line cases

• Radar location (HK) at center (~ 250 km in x- and y- directions)

• 5 input frames are used and a total of 15 frames (i.e. T+90 min) 
in forecasts
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Ongoing Development

• Longer training dataset (~ 10 years data)

• Adaptive learning to cater for multiple time scale processes

• Optimizing performance for higher rainfall intensity based on 
different convolutional and pooling strategies

• Extend learning process to extract stochastic characteristics of 
radar echo time sequence, features of convective 
development from mesoscale/fine-scale NWP models


